GoGeometry Problem 350

This solution was submitted by Michael Tsourakakis from Greece

QS=HP (common tangents of circles 2,3). We know of 349 problem that
$E G=F H=D P=D N=R M=Q R$
$\mathrm{QS}=\mathrm{HP} \Rightarrow \mathrm{QR}+\mathrm{RS}=\mathrm{HF}+\mathrm{FP} \Rightarrow \mathrm{RS}=\mathrm{FP}$ But $\mathrm{RS}=\mathrm{RN}$ (common tangents of circle 3) so $\mathrm{FP}=\mathrm{RN}$
$\mathrm{CT}=\mathrm{CF}$ (tangent lots circle 1) , $\mathrm{CP}=\mathrm{CK}$ (tangent lots circle 3) therefore $\mathrm{CF}-\mathrm{CP}=\mathrm{CT}-\mathrm{CK} \Rightarrow$ $\Rightarrow F P=T K$. Because $F P=R N$. finally $R N=T K$. But $B N=B K$ (tangent lots circle 3)

So $B N-R N=B K-T K \Rightarrow B R=B T \Rightarrow$ Triangle $B R T$ is isosceles, so bisector $B I$ the angle DBC is mediator of RT .So $\angle \mathrm{LRT}=\angle \mathrm{LTR}=\angle \mathrm{x}, \angle \mathrm{BRL}=\angle \omega$ and $\angle \mathrm{ELR}=\angle 2 \mathrm{x}$
because the quadrilateral $\mathrm{EBLR}, \angle \mathrm{BEL}=\angle \mathrm{BRL}=\angle \omega$ is inscribable .So
$\angle \mathrm{ABD}=\mathrm{v}=\angle \mathrm{ELR}=\angle 2 \mathrm{x}=2 \angle \mathrm{ETR}$
o.ع. δ

FIGURE

